David Fletcher:

For years, the mantra in the world of business software and enterprise IT has been “data is the new gold.” The idea was that companies of nearly every shape and size, across every industry imaginable, were essentially sitting on top of buried treasure that was just waiting to be tapped into. All they needed to do was to dig into the correct vein of their business data trove and they would be able to unleash valuable insights that could unlock hidden business opportunities, new sources of revenue, better efficiencies and much more.
 
 Big software companies like IBM, Oracle, SAP and many more all touted these visions of data grandeur, and turned the concept of big data analytics, or just Big Data, into everyday business nomenclature.
 
 Analytics is hard, and there’s no guarantee that analyzing huge chunks of data is going to translate into meaningful insights.
 
 Even now, analytics is also playing an important role in the Internet of Things, on both the commercial and industrial side, as well as on the consumer side. On the industrial side, companies are working to mine various datastreams for insights into how to improve their processes, while consumer-focused analytics show up in things like health and fitness data linked to wearables, and will soon be a part of assisted and autonomous driving systems in our cars.
 
 The truth is, analytics is hard, and there’s no guarantee that analyzing huge chunks of data is going to translate into meaningful insights. Challenges may arise from applying the wrong tools to a given job, not analyzing the right data, or not even really knowing exactly what to look for in the first place. Regardless, it’s becoming clear to many organizations that a decade or more into the “big data” revolution, not everyone is hitting it rich.